Characteristics of TBS-extractable hyperphosphorylated tau species: aggregation intermediates in rTg4510 mouse brain.
نویسندگان
چکیده
Conditional overexpression of four-repeat human tau containing the P301L missense mutation in the rTg4510 mouse model of tauopathy leads to progressive accumulation of neurofibrillary tangles and hyperphosphorylated, sarkosyl-insoluble tau species, which are biochemically comparable to abnormal tau characteristic of hereditary tauopathies termed FTDP-17. To fully understand the impact of tau species at different stages of self-assembly on neurodegeneration, we fractionated rTg4510 brain representing several stages of tauopathy to obtain TBS-extractable (S1), high salt/sarkosyl-extractable (S3), and sarkosyl-insoluble (P3) fractions. Under reducing condition, the S1 fraction was demonstrated by western blotting to contain both 50-60 kDa normally-sized and 64 kDa tau. Both are thermo-stable, but the 64 kDa tau showed a higher degree of phosphorylation. Under non-reducing condition, nearly all TBS-extractable 64 kDa tau were detected as ∼130 kDa species consistent with the size of dimer. Quantitative analysis showed ∼80 times more 64 kDa tau in S1 than P3 fraction. Immunoelectron microscopy revealed tau-positive granules/short filaments in S1 fraction. These structures displayed MC1 immunoreactivities indicative of conformational/pathological change of tau. MC1 immunoreactivity was detected by dot blotting in samples from 2.5 month-old mice, whereas Ab39 immunoreactivity indicative of late stages of tau assembly was detected only in P3 fraction. Quantitative analysis also demonstrated a significant inverse correlation between brain weight and 64 kDa tau, but the level of TBS-extractable 64 kDa tau reflects neurodegeneration better than that of sarkosyl-insoluble 64 kDa tau. Together, the findings suggest that TBS-extractable 64 kDa tau production is a potential target for therapeutic intervention of tauopathies.
منابع مشابه
Sex difference in pathology and memory decline in rTg4510 mouse model of tauopathy.
Abnormal phosphorylation of tau protein is a common event in many neurodegenerative disorders, including Alzheimer's disease and other tauopathies. We investigated the relationship between hyperphosphorylated tau in brain extracts and mnemonic functions in rTg4510 mouse model of tauopathy. We report that rTg4510 mice showed rapid deterioration in spatial learning and memory, which paralleled a ...
متن کاملVolumetric MRI and MRS provide sensitive measures of Alzheimer's disease neuropathology in inducible Tau transgenic mice (rTg4510)
The purpose of this study was to determine if in vivo high resolution 3D MRI and localized (1)H MR spectroscopy (MRS) can detect brain findings resembling Alzheimer's disease in a transgenic mouse model of Tau pathology. Seven double transgenic rTg4510 female mice and 7 age-matched wild-type (wt) female mice were evaluated at 5 months of age. To confirm the usefulness and consistency of in vivo...
متن کاملAccumulation of pathological tau species and memory loss in a conditional model of tauopathy.
Neurofibrillary tangles (NFTs) are a pathological hallmark of Alzheimer's disease and other tauopathies, but recent studies in a conditional mouse model of tauopathy (rTg4510) have suggested that NFT formation can be dissociated from memory loss and neurodegeneration. This suggests that NFTs are not the major neurotoxic tau species, at least during the early stages of pathogenesis. To identify ...
متن کاملIn vivo axonal transport deficits in a mouse model of fronto-temporal dementia
BACKGROUND Axonal transport is vital for neurons and deficits in this process have been previously reported in a few mouse models of Alzheimer's disease prior to the appearance of plaques and tangles. However, it remains to be determined whether axonal transport is defective prior to the onset of neurodegeneration. The rTg4510 mouse, a fronto-temporal dementia and parkinsonism-17 (FTDP-17) tauo...
متن کاملSelective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB
Accumulating evidence implicates impairment of the autophagy-lysosome pathway in Alzheimer's disease (AD). Recently discovered, transcription factor EB (TFEB) is a molecule shown to play central roles in cellular degradative processes. Here we investigate the role of TFEB in AD mouse models. In this study, we demonstrate that TFEB effectively reduces neurofibrillary tangle pathology and rescues...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Alzheimer's disease : JAD
دوره 33 1 شماره
صفحات -
تاریخ انتشار 2013